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Our EigenArch is based on three interconnected  tasks:

1) Algorithms to approximate gradient data in machine 

learning efficiently. We proposed streaming batch principal 

component analysis (SBPCA) [4] (Fig. 2).

2) Compact hardware implementations. We proposed and 

synthesized quasi-systolic array (QSArray) (Figs. 3 and 4).

3) Experimental validation in 20,000 ReRAM device platform

Figure 5. SBPCA  accuracy and memory results. For low rank decomposed form 
has similar accuracy with MBGD for (a) CIFAR10 and (b) CIFAR100.“Author’s Own”

Figure 6. Performance estimates and  comparisons “Author’s Own”

GOAL: Develop faster and more efficient machine learning 

accelerators using arrays of emerging analog devices 

called resistive switches (ReRAM) and digital coprocessors 

CONTEXT: ReRAM technology promise 100-10,000x lower 

energy consumption, 30,000x faster operation than SOA.

PROBLEM: High write energy, high write latency, limited 

endurance, non-ideal weight updates, limited digital 

coprocessor resources

CURRENT SOLUTIONS: 1) Find better devices → will 

always be imperfect 2) Batch training [1] + duplicate 

memory + 1-by-1 device programming (Fig. 1a, [2]) → 

requires expensive coprocessor or emerging technology 

OUR VISION: Low-rank coprocessor for batch training in 

conventional hardware  (systolic arrays [3]) to extract and 

use only most important information during training (Fig. 1b)

+ high performance, memory efficient

+ array level update → speed increase

Figure 1. Existing vs. proposed approach to training memristor M x N arrays 
(a) Duplicative short-term memory (M x N capacitor array) overcomes memristor
non-ideality and the high programming power of 1-by-1 weight updating [2]; (b) 
proposed approach with low rank short term memory implemented using systolic 
arrays that produces rank-by-rank updates at the array level. “Author’s Own”
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Relevance to FRANC: Efficient digital coprocessors can

improve the technology readiness level of emerging 

technologies: • Exploit new technologies for inference to use 

in training •  Mitigate device limitations, reduce AI operation 

energy • bring edge performance to the warfighter. 

The results obtained in the first six months are:

1) Proposed SBPCA algorithm approximates well 

gradient data for training on datasets of various 

complexities e.g. CIFAR-10, CIFAR-100 (Fig. 5)

• Comparable accuracy at low rank to traditional mini-

batch gradient descent (MBGD) at lower memory
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Figure 3. EigenArch implementation.“Author’s Own”

HARDWARE ARCHITECTURE:

=

ReRAM memory array

+

Quasi-systolic arrays (qsarray) to 

calculate gradient decomposition

+

Access circuitry  (ADCs, DACs)

Figure 2. Streaming Batch Principal Component Analysis (SBPCA).“Author’s Own”

ALGORITHMIC IMPLEMENTATION:

SBPCA = approximation of a full gradient matrix from k-rank 

samples of its contributed parts
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Accuracy

no dropout

Accuracy

dropout

Accuracy

no dropout

Accuracy

dropout

Accuracy

no dropout

Accuracy

dropoutRank

1 0.7292 0.7386 0.4033 0.3191 0.3333 0.3010

3 0.7542 0.7517 0.4411 0.3993 0.3940 0.3688

10 0.7710 0.7709 0.4522 0.4452 0.4537 0.3960

30 0.4462 0.4872 0.4933 0.3977

100 0.4388 0.5179

MBGD 0.7615 0.7715 0.3674 0.5081 0.4613 0.5437

CIFAR-10 CIFAR-100 ImageNet

Rank
Memory

Memory 

expanded 
FLOP Memory 

Memory 

expanded 
FLOP Memory 

Memory 

expanded 
FLOP 

1 2.76% 0.28% 0.95% 2.53% 0.28% 0.95% 1.29% 0.15% 0.48%

3 6.84% 0.73% 2.87% 6.62% 0.72% 2.87% 3.37% 0.39% 1.45%

10 21.11% 2.30% 9.62% 20.93% 2.26% 9.60% 10.63% 1.23% 4.90%

30 61.89% 6.67% 29.56% 31.40% 3.65% 15.11%

100 205.98% 22.19% 107.35%

MBGD 100% 100% 100% 100% 100% 100% 100% 100% 100%
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2)  Systolic hardware implementation has good 

performance with higher technology readiness (Fig. 6):

• Area/energy/latency estimates obtained by synthesis 

of Verilog code in Synopsys Design Compiler

Impact for DoD and commercial efforts:

• Increases technology readiness level of ReRAM for AI

• Proposed systolic implementation in existing technology 

→ quick prototyping for DoD and commercialization

• Applicable beyond ReRAM to other analog technologies

Figure 4. Synthesis results (a) rank-level maps for a rank-3 quasi-systolic array with 
128-element Input Vectors in a TSMC 16nm process, meets timing of 500 MHz.
(b) hypothetical visualization of the binary tree for rank 1. “Author’s Own”

SYNTHESIS RESULTS:

• Each column in the 

qsarray is a binary tree 

of CORDIC processing 

elements (PE)

• Phase angles in each 

PE store the principal 

components for the 

SBPCA algorithm.
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